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Abstract. The joint model is a new shared parameter model consisting of longitudinal and survival 

data. In general, we often use a linear mixed-effects model to estimate the longitudinal sub-model 

and a Cox proportional hazard model to estimate the surviving sub-model. However, the linear 

model requires a hypothesis of normal distribution. Consequently, when the assumption is not valid, 

the estimation result will produce large deviations. In this paper, we use machine learning to 

estimate the longitudinal model, and the survival model still uses the Cox model. We compare the 

effects of the linear mixed-effects model and the machine learning method. These two estimation 

methods are compared by simulated data. The results of the comparison show that the residuals 

diagnosis outcomes of the machine learning survival sub-model are more in line with the theoretical 

results, while the residuals of the longitudinal sub-model are more dispersed than the linear model. 

Additionally, the running time of the machine learning is shorter than that of the linear mixed effect 

model. 

Introduction 

In recent years, more and more researchers are interested in joint models consisting of longitudinal 

data and time-to-event data, especially in the field of statistics and biological diseases. Longitudinal 

data refers to the repeated measurement of data by a group of individuals in time or space order. 

Each individual is observed multiple times at different times or under different test conditions, and 

the obtained data has the characteristics of time series and cross-section data. In many practical 

studies, participants were followed up repeatedly to obtain longitudinal data. The event time data 

refers to the time elapsed from a certain starting point to the occurrence of the event. The event time 

data we usually study is the time of death, also known as Survival data. 

There are many approaches on the joint model with longitudinal data and survival data. The most 

typical one is two-stage method, unfortunately substantial research on this topic indicates that this 

approach results in biased estimates [12,3,11,15]. In addition, maximum likelihood estimation [2,5] 

is a common method to estimate parameters in joint model. In terms of the joint model, time cost is 

a difficult problem to solve. Therefore, in order to reduce the computational cost and improve the 

efficiency of the model, many researchers have introduced the R software packages. Rizopoulos 

(2010, 2014) introduced two software packages, JM and JMbayes, respectively based on the 

expected maximum and Bayesian methods, which plays an active role in promoting the R packages 

used to fit the joint model. 

The machine learning methods have the unique advantage when fitting longitudinal sub-model, 

namely it does not need to consider any assumptions, compared with linear mixing effect. In this 

paper, we estimate the joint model by means of the machine learning method [21]. And the 

simulation data including the longitudinal and survival data is used. Through the simulation data, 

we compare the maximum likelihood with the aid of the JM packages and the machine learning 

methods, such as the classification tree, nearest neighbor, random forest and support vector 

regression. What’ s more, the running time is also be used to compare. 

Joint Model Framework 

The joint model of longitudinal data and survival data is divided into two parts: longitudinal 
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sub-model and survival sub-model. Linear mixed effect model is usually used to fit the longitudinal 

sub-model, while survival sub-model is almost the Cox proportional risk model [12]. 

For each subject 1,2, ,i n ,  1 2, , ,T T T

i i i iKy y y y is the K-variate continuous outcome vector 

with possible right-censoring, where each iky denotes an  1ikn  -vector of observed longitudinal 

measurements for the k-th outcome type:  1 2, , ,
ik

T

ik i k i k in ky y y y .Each outcome is measured at 

observed (possibly pre-specified) time 
ijkt for 1,2, , ikj n  1,2, ,k K , which can differ 

between subjects and outcomes. Let iT  denote the observed failure time for the i -th subject 

( 1,2, ,i n ), which is taken as the minimum of the true event time *

iT and the censoring time iC , 

i.e.,  *min ,i i iT T C .Furthermore, we define the failure indicator  *

i i iI T C   , where  I is 

the indicator function that takes the value 1 if the condition *

i iT C  is satisfied , and 0 otherwise. 

Thus, the observed data for the time-to-event outcome consist of the pairs   , , 1,2, ,i iT i n  . 

In terms of the longitudinal sub-model,  
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 iky t  denotes the value of the k -th longitudinal outcome for the i -th subject at time point t , 

and  ikm t denotes the true value of the subject-specific i  underlying longitudinal covariate at time 

point t  for the k-th outcome. ik  is the model error term, which we assume to be independent and 

identically distributed normal with mean 0 and variance 2

k .  ikx t  and  ikz t  denote the design 

vectors for the fixed-effects k  and for the random effects ikb , respectively. More specifically, the 

complete vector of random effects  1 2 1, , ,
T

T T T

i i i Kb b bb is assumed to follow a multivariate normal 

distribution with mean zero and variance-covariance matrix D . 

As to the survival sub-model, we apply the extended Cox model (also known as the 

Andersen-Gill model) 

       0, exp T

i i i i ih t M t h t m t                                                

 (2) 

Among them,     ,0i iM t m u u t   denotes the history of the underlying longitudinal 

process up to t ,  0h t  denotes the baseline hazard function, and  i t  is a vector of exogenous, 

possibly time-varying (such as treatment method index, disease history, gender, etc.), covariates 

with corresponding regression coefficients  .  describes the effect of the potential output im  on 

the hazard ih [11]. 

To sum up, the joint model with multivariate longitudinal data and survival data is as follows: 
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Estimation Method 

Linear Mixed-effects Model. Linear mixed-effects models are extensions of linear regression 

models for data that are collected and summarized in groups. These models describe the 

relationship between a response variable and independent variables, with coefficients that can vary 

with respect to one or more grouping variables. A mixed-effects model consists of two parts, fixed 

effects and random effects. Fixed-effects terms are usually the conventional linear regression part, 

and the random effects are associated with individual experimental units drawn at random from a 

population. The random effects have prior distributions whereas fixed effects do not. Mixed-effects 

models can represent the covariance structure related to the grouping of data by associating the 

common random effects to observations that have the same level of a grouping variable. The 

standard form of a linear mixed-effects model is  

random errorfixed

y X Zb                                                               (4) 

Mixed-effects models are also called multilevel models or hierarchical models depending on the 

context. Mixed-effects models are a more general term than the latter two. Mixed-effects models 

might include factors that are not necessarily multilevel or hierarchical, for example crossed factors. 

That is why mixed-effects is the terminology preferred here. Sometimes mixed-effects models are 

expressed as multilevel regression models (first level and grouping level models) that are fit 

simultaneously. 

Machine Learning Methods. The Cox proportional hazard model is used to estimate the 

survival sub-model. With regard to the estimation of the longitudinal sub-model, this kind of 

Statistical models, such as the mixed effect models, requires a variety of assumptions about the data, 

which are mathematically convenient but not necessarily satisfied. Therefore, the results of 

simulation with these models will produce bias, to the extent. Recent years, the machine learning, 

namely the data mining technique or the algorithm model, has been widely used. The algorithm 

method has no assumptions about the data, and the simulated results can be judged by the means of 

the cross-validation, which deviates from the hypothetical distribution. Based on this method, the 

prediction effect of the model is comparably great, and the results of the cross-validation are 

relatively easy to be understood and accepted by many practical investigators. In the following, we 

will summarize the main four methods in machine learning [22]. 

The first is the decision tree. When used for regression, the decision tree is also called the 

regression tree. While used for classification, it is called classification tree. It is simple to use the 

decision tree. If there are new observations (only arguments known), we can go from the root node 

to an end node according to the size of each variable of the decision tree, where the mean of the 

dependent variable is the predicted value of the dependent variable of the observation’s value. 

The nearest neighbor method is probably the easiest way among the all algorithms modellings. It 

regresses or classifies test sets based on training sets. Each regression or classification problem has 

some independent variables that make up a multidimensional space. First assume a distance in 

space. For example, in the case of continuous independent variables, Euclidean distance, absolute 

distance, etc. can be used. In the classification problem, a point of the test set should be judged as 

the type of the majority of the k points closest to the point in the training set. The "majority voting 

method" generally has the weight. The closer the point, the greater the weight of voting. The 

predicted value of the dependent variable of a test set point should be equal to the average of the 

corresponding dependent variable values of the k closest training sets. 

Random forest is another combination method, which is also generated by a decision tree, which 

is formed by randomly resampled samples. The characteristic is that the segmentation variables of 

each node of these decision trees are not generated by all independent variables, but generated by a 

small number of randomly selected variables. So not only the samples that each decision tree are 

generated, but the generation of each node of each tree are random. These decision trees randomly 

generated are large and are therefore called random forests. The voting (or average) of the results is 

equal. 
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The support vector machine(SVM) is a two-class model, whose purpose is to find a hyperplane 

to segment the sample. The principle of segmentation is to maximize the interval and finally 

transform it into a convex quadratic programming problem. The regression method developed by 

SVM is called support vector regression(SVR). 

Five-fold cross-validation was used for the above methods to judge the reliability of the results. 

In the calculation, five models are established through five randomly established training sets, and 

five standardized mean square errors (NMSE) are obtained for the training set and the test set, 

respectively, and five average NMSEs are obtained [21]. Let y  be the mean of the dependent 

variable, ŷ  is the predicted value of the model obtained from the training set against a data set 

(which may be the training set itself or the test set), where NMSE is defined  

 

 

2

2

ˆy y
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y y









                                                          (5) 

In general, the smaller the NMSE, the better. 

Methods Comparison in Simulation Dataset 

In this section, we will compare the maximum likelihood and the machine learning method, through 

the simulation dataset and the actual dataset respectively. 

Firstly, we use the maximum likelihood estimation to fit the simulation data by means of the JM 

packages. The fitted results are showed in Table 1. It is obvious that all the tests are quite 

remarkably. And the NMSE is 0.000705. 

Using the maximum likelihood estimation to fit the joint model requires a prerequisite, that is the 

normal distribution. But this assumption may not always be valid. When the assumption of the 

distribution of random effects is not established, the estimated results may have a large deviation. 

We now test the normality of the residuals of the joint model fitted by the traditional method. 

According to the Figure 1 and Table 2, the Q-Q plot and the Shapiro normality test, we can see that 

the residuals do not obey the normal distribution. That is to say, the hypothesis of the longitudinal 

sub-model is invalid. 

 

Table 1  The main outcomes of the joint model by JM package 

 Longitudinal submodel Survival submodel 

Variables Intercept ltime ctsxl binxl ctsx binx 

coeffecient 0.998 1.066 1.007 0.997 0.647 0.607 

p-value 0 0 0 0 < 2e-16 3.65e-10 

 

Table 2  The results of the Shapiro test 

Shapiro-Wilk normality test 

Data W statistics value p-value 

res.lmefit 0.9554 < 2.2e-16 

 

Table 3  The NMSE comparison of the four machine learning methods 

Method 
Classification 

tree 

Random 

forest 

Nearest neighbour 

regression 

Support vector 

regression 

NMSE 0.6180 0.7388 0.3941 0.7154 
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Table 4  The running time of tne kknn and the lme [secs] 

Model Kknn Lme 

Time 3.3004 32.2907 

 

 

Figure 1.  The Q-Q plot of the joint model by JM package 

Next, we use the four machine learning methods to fit the longitudinal sub-models, while the 

survival sub-model is estimated by the Cox proportional hazard model. The NMSEs of the four 

methods are showed in Table 3. As we can see, the NMSE of kknn is the smallest among them. So, 

we will estimate the joint model only by the kknn. In the Figure 2, the left part is the residuals plot 

of the kknn, and the right is the JM. The slope of the trend line of the kknn method is larger than 

that of the trend line of the linear mixed-effects model. 

 

 

 

Figure 2.  The plot of residuals and the fitted values of the linear mixed-effect model and kknn 

method 

In the Figure 3, the left part is the residualss plot of the kknn, and the right is the JM. The 

residualss scattered points of the kknn regression are between the horizontal lines 7 and -7, mainly 
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between 1.5 and -1.5. Conversely, the residualss of the linear mixed effects range from -1 to 1, 

mainly from -0.15 to 0.15. It is clear that the residualss of the kknn is more dispersed than ones of 

the linear mixed effect regression. 

 

 

Figure 3.  The residuals plot of the linear mixed-effect model and kknn method 

 

As for the survival sub-model, we employ the Cox-Snell residuals [21]. The formula of the 

Cox-Snell residuals is as the following: 

      
   

0
0

exp
iT

tcs

i i i i

tm

i i i i

tm

i i

r R s h s m t ds

N T r T

r

 



 

 

 


                                          (6)  

In Figure 4, the upper left part is the KM estimate of the Cox-Snell residuals of the nearest 

neighbour joint model, and the upper right is the KM estimate of the nearest neighbor Cox-Snell 

residuals; the bottom left is the KM estimate of the Cox-Snell residuals of the linear mixed effect 

joint model. On the upper right is the KM estimate of the Cox-Snell residuals of the linear 

mixed-effects joint model. The dashed line is its corresponding 95% point-by-point confidence 

interval, and the gray solid line is an exponential distribution function with a parameter of 1. 

Compare the Cox-Snell residualss of these two method, we can see that the KM estimation image of 

the Cox-snell residualss of the kknn joint model is closer to the ideal state than those of the linear 

mixed effect joint model. Therefore, the kknn method is better fitted to the survival sub-model.  
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Figure 4.  The comparison plot of two methods 

 

In addition, we compare the running time of these two methods. The specific figures are showed 

in Table 4. Evidently, the kknn runs faster than the lme in fitting the joint model. 

We can also compare these two methods of joint model in some actual dataset, such as the aids 

data [9]. The results are the same to that of the simulation data[21]. 

Summary 

In this paper, the machine learning method is used to fit the joint model, which breaks the 

limitations of the traditional simulation method. The longitudinal sub-model is regressed by 

machine learning methods such as classification tree, nearest neighbor method, random forest and 

support vector regression. The survival sub-model is still estimated by the Cox proportional hazard 

model. According to the Dimitris diagnosis method, the fitted survival model is better than the 

survival model of the traditional joint model, and the residuals image is more in line with the 

theoretical results. In addition, the machine learning method is different from the traditional analog 

joint model method in that it does not consider various distribution hypotheses, and can also make 

full use of observed variables and observation information. From the experiments in this paper, we 

know that the residuals graph of machine learning is more scattered than the residuals graph of the 

linear mixed-effects model. 

When using a conventional method such as a linear mixed-effects model to estimate a vertical 

sub-model, it is also necessary to verify whether the assumptions of the model are satisfied. When 

the assumptions are true, the NMSE of the linear mixed-effects model is naturally smaller than that 

of machine learning. Moreover, thanks to the years of accumulation, the traditional estimation 

method is more mature. In this case, the traditional method is better. However, when the assumption 

is not true, it is better to aid for the machine learning method to fit the joint model, because it is not 

necessary to consider the deviation of the result when the assumption is not established.  
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